- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bogard, David G. (2)
-
Fox, Dale W. (2)
-
Furgeson, Michael (2)
-
Flachs, Elise M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent evidence suggests that film cooling flows with engine realistic mainstream Mach number have declined performance in comparison to those with conventional low-speed laboratory conditions. Consideration and understanding of these effects are fundamental to improving film cooling research. The proposed computational study investigates the film cooling performance of a 7-7-7 shaped film cooling hole with respect to varying mainstream Mach number, with constant Reynolds number. The cases studied include mainstream Mach numbers from 0.15–0.75, with a fixed, engine realistic, hole Reynolds number of Red = 10, 100. Significant results are then evaluated against varying stagnation temperature ratio and blowing ratio. The results showed that at a blowing ratio of 1.75, the adiabatic effectiveness declines significantly with high mainstream Mach number. The decreased performance is due to supersonic flows and shocks in the film cooling hole that disrupt flow in the diffuser section of the hole. These characteristics are observed across all stagnation temperature ratios considered. In addition to these insights, the study discusses the importance of proper thermal scaling and definition of adiabatic effectiveness when operating at high mainstream Mach number. It is demonstrated that the effects of high-speed flow challenge the efficacy of the conventional parameters used to characterize film cooling performance.more » « less
-
Fox, Dale W.; Furgeson, Michael; Flachs, Elise M.; Bogard, David G. (, ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition)While modern gas turbine engines operate at hot gas path velocities approaching the speed of sound, few facilities have studied the effects that the flow’s compressibility can have on the adiabatic effectiveness. A new facility at the University of Texas at Austin has been developed to investigate these high Mach number effects and how to appropriately scale laboratory film cooling experiments to engine conditions. This study investigates two film cooling hole geometries, a baseline 7-7-7 shaped film cooling hole and a recent design which has been numerically optimized for increased effectiveness. Both holes are tested at mainstream Mach numbers of 0.25 and 0.50 in a flat plate test section. The optimized hole outperforms the effectiveness of the baseline geometry at all blowing ratios tested, matching the trend in the results of previous studies on these geometries. However, there is a marked decrease in film cooling hole performance as the Mach number is increased.more » « less
An official website of the United States government
